215 research outputs found

    Computing the Kullback-Leibler Divergence between two Weibull Distributions

    Full text link
    We derive a closed form solution for the Kullback-Leibler divergence between two Weibull distributions. These notes are meant as reference material and intended to provide a guided tour towards a result that is often mentioned but seldom made explicit in the literature

    Efficient Information Theoretic Clustering on Discrete Lattices

    Full text link
    We consider the problem of clustering data that reside on discrete, low dimensional lattices. Canonical examples for this setting are found in image segmentation and key point extraction. Our solution is based on a recent approach to information theoretic clustering where clusters result from an iterative procedure that minimizes a divergence measure. We replace costly processing steps in the original algorithm by means of convolutions. These allow for highly efficient implementations and thus significantly reduce runtime. This paper therefore bridges a gap between machine learning and signal processing.Comment: This paper has been presented at the workshop LWA 201

    Maximum Entropy Models of Shortest Path and Outbreak Distributions in Networks

    Full text link
    Properties of networks are often characterized in terms of features such as node degree distributions, average path lengths, diameters, or clustering coefficients. Here, we study shortest path length distributions. On the one hand, average as well as maximum distances can be determined therefrom; on the other hand, they are closely related to the dynamics of network spreading processes. Because of the combinatorial nature of networks, we apply maximum entropy arguments to derive a general, physically plausible model. In particular, we establish the generalized Gamma distribution as a continuous characterization of shortest path length histograms of networks or arbitrary topology. Experimental evaluations corroborate our theoretical results
    corecore